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1 Background

The designers of the TCP/IP protocol suite explicitly included support of satellites in their design goals.
The goal of the Internet Project was to design a protocol which could be layered over different networking
technologies to allow them to be concatenated into an internet. The results of this project included two
protocols, IP and TCP. IP is the protocol used by all elements in the network and it defines the standard
packet format for IP datagrams. TCP is the end-to-end transport protocol commonly used between end
systems on the Internet to derive a reliable bi-directional byte-pipe service from the underlying unreliable
IP datagram service.

Satellite links are explicitly mentioned in Vint Cerf's 2-page article which appeared in 1980 in CCR [2] to

introduce the specifications for IP and TCP. In the past fifteen years, TCP has been demonstrated to work
over many differing networking technologies, including over paths including satellites links. So if satellite
links were in the minds of the designers from the beginning, what is the problem? The problem is that the
performance of TCP has in some cases been disappointing.

A goal of the authors of the original specification of TCP was to specify only enough behavior to ensure
interoperability. The specification left a number of important decisions, in particular how much data is to
be sent when, to the implementor. This was deliberately done. By leaving performance-related decisions
to the implementor, this would allow the protocol TCP to be tuned and adapted to different networks and
situations in the future without the need to revise the specification of the protocol, or break interoperability.

Interoperability would continue while future implementations would be allowed flexibility to adapt to needs
which could not be anticipated at the time of the original protocol design.

This designed-in flexibility has worked remarkably well, or is problematic, depending on your point
of view. It has allowed implementors the freedom to adapt TCP to a very wide range of circumstances.
For example, TCP has been tuned for situations differing by six orders of magnitude in bit rate. But this



freedom may be a mixed blessing. Potentially, there may be new bugs with every implementation. There is no

complete specification of a TCP behavior that an implementor could attempt to verify a new implementation

against. (The specification does not specify every state transition and every action the implementation may

make.)

TCP has in reality been remarkably successful. Despite these challenges of implementation, interoper-

ability is routinely experienced (even between two implementations which have not yet been tested against
each other). That two different implementations of TCP can connect and transfer data without corruption

is (today) no surprise. But occasionally, difficulties do exist in performance. How efficiently or quickly a

TCP may perform may vary quite a bit as different TCPs are tried in different situations. It is in this area

that research and work has continued in the development of TCP.

The most significant change in the normal practice of implementing TCP was the development in 1988

of the slow-start and congestion avoidance algorithms by Van Jacobson [3]. The key elements of these
algorithms are that they start by sending a single packet, and then open a congestion window slowly as new

acknowledgments arrive. When a packet is discovered to be lost, it is taken as a sign that congestion has

been encountered, and the congestion window is cut in half and then grown slowly (by a single new packet

per round-trip). Each new packet loss causes a new halving of the congestion window. This description of

these algorithms is slightly over-simplified, but is accurate for all variants of them and captures the most

important aspect of these algorithms: that they respond to congestion (as indicated by the loss of a packet)

by exponentially reducing the number of packets that they allow into the net at any one time until there is

no more evidence of congestion (until packets are not dropped). Then, the number of packets put into the

net is increased slowly, and only as progress is made (packets are acknowledged).
These 1988 developments by Van Jacobson are today a critical part of the architecture of the Internet.

These algorithms control the transmission of most of the traffic in the net today and they are in most cases

the only thing keeping the net from collapsing due to congestion. They are now required of all Internet

implementations by the Requirements for Internet Hosts, RFC 1122 [1].

2 Satellite links

The characteristics of satellite links include more bit-errors and increased delay (when compared with ter-

restrial links). That is the conventional wisdom, and is true for older satellite systems. Both of these

characteristics present a problem for supporting TCP over satellite links. More bit-errors increase the num-

ber of packets lost (each of which any modern TCP will take as a sign of congestion), while the increased

delay increases the number of packets that must be simultaneously in-flight to take full advantage of the
available throughput that the path may carry, and reduces the rate at which TCP probes for more bandwidth

(because the probing algorithm probes for one new packet per round-trip time).
Our original plan for this project was to address both of these issues. But after some thought at the

beginning of the project about what level of error-correcting-code performance should be practicable to

implement on wireless links with today's electronics technology, it seemed that TCP's behavior in the face of

packets lost due to errors should be moot by the time we could expect to see any widespread deployment of

any changes that we may be able to advocate as a result of this project. We asked "Can we expect satellite
links to be practically error-free in a few years?" to satellite industry representatives at a TIA/SCD/CIS

meeting in Virginia in late 1996 and later at a meeting at the NASA Lewis Research Center in early 1997,

and got a near-unanimous "Yes". The two exceptions were (1) folks from one company who are today using

a fairly old system (where they do see bit error rates that may cause some problems with TCP performance)

and (2) from one representative concerned about military jam-resistant systems where they are concerned

that under heavy jamming by the enemy, they may still see significant packet loss rates (perhaps one in ten

or worse) due to uncorrectable errors on the link.

In the discussion at the TIA/SCD/CIS meeting in late fall 1996, we asked those gathered if it would
be appropriate to re-direct any planned effort at making TCP cope with losses due to uncorrectable bit

errors into making sure that TCP was better able to cope with long-delays (while still assuming that all

losses indicate congestion) and all agreed that that should be done. So we dropped (or at least delayed

indefinitely) plans to look into how to make TCP cope with error losses.
So the remaining problem that we are to address is the increased delay seen by TCPs when carried over

a link involving a satellite in geosynchronous orbit. Satellites in geosynchronous orbit are a bit more than



aneighthof a light secondawayfromgroundstationsontheearth. (Actually,if youareon theequator
directlyunderthesatellite,thenthesatelliteisabit lessthananeighthofa lightsecondaboveyou.)Delays
acrossterrestrialwide-areanetsrangefromaround100msround-tripto crossacontinentto around400ms
round-tripbetweenNorthAmericaandAustralia.Theresultis that thedelaysonpathsinvolvingsingle
geosynchronoussatellitearesomewherebetween5 and10timeslongerthmatheywouldbeontypicalintra-
continentalterrestrialpaths,andbetween1.2and5 timeslargerthanwouldbeseenon inter-continental
terrestrialpaths.

3 Identifying the causes of poor performance over long-delay paths

The product of the bit rate (at w_hich one wishes to communicate) and the round-trip delay measures the

number of bits that must be "in-flight" (sent but not yet acknowledged at the sender) at once. (And dividing

this by the number of bits carried per packet gives the number of packets that must be in-flight.) The TCP

transmitter controls when packets are sent. It is constrained by the end-to-end flow-control window (which

is carried alongside the acknowledgement in the TCP header of the returning packets). It is also constrained

by the slow-start and congestion avoidance algorithms (which are included in most all TCP implementations

today). What is controlled by them is the number of packets which may be in flight at any given time. If

the delay is increased while the bit-rate is held constant, the number of in-flight packets must increase to

maintain the same level of throughput.

Our understanding as this project began included recalling numerous anecdotal reports that TCP does

not work well over long-delay paths and that the reason it doesn't work well is that the window is too small.
But it is difficult to be sure of the real cause of these problems from these anecdotal reports. (Clearly, a

window that is too small will limit throughput, but it is not clear that it is the only cause of trouble). There
are quite a few implementations of TCP, and there are many possible variations in implementation which

could impact performance (in general) and performance over long-delay paths. But we believed the most

important issues were the end-to-end flow-control window and the behavior of the slow-start and congestion

avoidance algorithms.

4 Simulation

To demonstrate and experiment with the effects of these algorithms, we sought a simulation environment,

preferably one which already implements TCP, preferably in ways that closely follow the various versions

of the BSD TCP. The BSD TCP implementations are significant because they are de-facto reference im-

plementations. Two candidate simulation environments were considered. The first was the Netsim system
developed by David Clark's group at MIT. Its advantages included the good use of a graphical display (which

makes it possible to watch things as the simulation runs, and which makes it nice for running demos) and

that actual BSD kernel TCP implementations had been ported to run in the Netsim simulator. Actually

running real TCP implementations in the simulator is a good way to make sure that the simulation has not

missed an important effect due to over simplification, and we saw this as very desirable.

The other simulator we considered, and subsequently chose, was the NS simulator developed by the

network research group at LBL. Its advantages included much greater popularity in the research community,

easier configuration and setup of simulation runs (using the TCL scripting language) and a larger suite

of TCP simulation modules modeling many of variants of TCP that have been developed for BSD by the
Internet research community in the past few years. The disadvantages of the NS simulator (in our opinion)

were that the TCP modules were not constructed from actual TCP code from real implementations, and

the simulation of TCP is only approximate. In the NS simulator, the simulated packets are not even real

TCP packets, but are just messages carrying the information necessary to simulate the aspects of the TCP

that the simulation designer thought important. Real TCP packets carry sequence numbers which represent

numbered bytes, while all the TCP implementations written for the NS simulator (so far) use packet sequence

numbers. The TCP implementations in the NS simulator are one-way connections, while real TCPs are full-
duplex. Also, the TCP implementations in the NS simulator have vastly simpler control structures than real

TCP implementations, as real TCP implementations have to handle the setup and teardown phases of TCP,
and communicate the end-to-end flow control window. The TCPs in NS do not even carry the end-to-end
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source router sink

100 Mbit/sec, zero delay

1.5 Mbit/sec, 25 ms or 250 ms one-way delay

Figure 1: The topology we used for all simulations of the various TCPs available in the LBL NS simulator.

The one-way delay on the long link for simulation of a "satellite" link was 250 ms, and for simulation of

a "terrestrial" link was 25 ms. Traces of packets traveling in both directions were collected as they were

transmitted on the 100 Mbit/sec no-delay link.

flow control window from the receiver, but just simulate a constant window from the highest acknowledged

packet.

Despite these shortcomings, we chose to use the NS simulator because we felt we could get to work faster

using it than using any other alternative of which we were aware.

5 Our first simulations

We modified existing sample simulations scripts of NS to produce output in the format of time-sequence

plots like those developed in [5], and ran some initial simulations to demonstrate how an end-to-end flow

control window that is too small can limit throughput, and that if the end-to-end flow-control window is

opened up, then the congestion window can limit throughput.

Now we were ready to simulate, but were still seeking to understand and separate the issues involved.
While thinking about that, we tried running the different TCP modules available in NS in different situations,

and explored the resulting time sequence plots teaching myself how to explain why each packet was sent

when it was. Our goal was to understand the fundamental problems (and then perhaps fix them), not to

produce more anecdotal evidence of some things going slower and other things going faster.

Figure 1 shows the topology we used for the simulations in the LBL NS simulator. The long link was the
bottleneck in all cases, and any packets dropped were dropped in the router due to a queue overflow. The

100 Mbit/sec link was included (instead of using a simpler topology) so that the returning packets carrying
acknowledgements could be logged by the normal packet tracing mechanisms in NS.

See Figure 2 demonstrates the problem when the end-to-end flow-control window is too small. As can

be seen more clearly in Figure 3, once the TCP transmitter has filled the window, it must wait a round-trip

time before proceeding further.

Figure 4 and Figure 5 show plots from the same experiments, but with the end-to-end flow-control window

opened wide enough so that it is not a factor. The throughput of the satellite case still suffers due to the

congestion-related algorithms in the TCP transmitter which limit the number of packets that may be sent

but not yet acknowledged.
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Figure 2: A comparison of the performance over a terrestrial link and a satellite link of a typical TCP which
does not open wide the end-to-end flow control window. In the case of the satellite, the window is limiting
the throughput severely. Figure 3 shows these same two plots at a magnified scale.
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Figure 3: A closer view of the two plots in Figure 2.
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Figure 4: The same comparison (plotted at the same scale) as Figure 2, but with the end-to-end flow control

window open wide enough so that it is not a factor. In both cases packet losses due to a queue overflow cause

the congestion-related algorithms in TCP to limit the TCP transmitter to less than the offered window. In

the terrestrial case, this does not limit throughput. But in the satellite case, throughput is limited. Figure 5

shows these same two plots at a magnified scale.
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Figure 5: A close view of the two plots in Figure 4 (at the same scale as in Figure 3).
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6 December 1996 IETF (San Jose)

Dr. Shepard traveled to the December IETF, and met up with others, most notably Aaron Falk (of TRW),

who are interested in how the Internet protocols can be made to work over satellite communication systems.

Aaron had been appointed chair of a TIA working group chartered to look into the problem of data protocols

over satellite. Prior to the IETF Dr. Shepard had exchanged e-mail with him to help introduce him to the

workings of the IETF. Aaron was trying to organize those who had interest in the subject to work together

to try to make TCP (and any other protocols later developed within the IETF) work better over paths that

include satellite links. At this December IETF, Dr. Shepard began an extensive discussion (which continued

through the April IETF in Memphis) with Aaron to bring him up to speed on how the congestion-related

algorithms in TCP are an issue and how they are an important architectural element of the Internet today.

Dr. Glover (of NASA) was also involved in some of these discussions.
Dr. Shepard was invited to present a plenary talk at this IETF on the plotting method for TCP packet

traces [5] that he had developed in the late 1980s. At the end of the plenary talk, he included a few plots

from the simulations in Figures 2 thru 5 showing how a performance problem can arise when TCP is used

over a Tl-rate satellite link and showed how just getting the end-to-end window opened wide is not sufficient
to solve the problem (because the congestion-related algorithms will limit how many packets can be sent).

This was to an audience of approximately 1500 people, and helped to raise the awareness of this issue in the

larger 1ETF community.
Our contribution at this point was to raise awareness that fixing the TCP-over-satellite performance

problems will need to involve more than just deployment of the options described in RFC2018 (TCP Selective

Acknowledgement Option) and RFC1323 (TCP Extensions for High Performance). These two documents

were well on their way through the standards process in the IETF at this point, and it seemed that in some

people's minds it appeared that these may be all that would be needed.

7 Cleveland Meeting of the TIA/SCD/CIS/IPWG

Aaron called for a meeting in late January of the Internet Protocols Working Group of the Communications

Interoperability Section of the Satellite Communications Division of the TIA. This meeting was hosted by
NASA Lewis Research Center in Cleveland. The purpose of the meeting was to bring the satellite industry

folks together to help the satellite industry understand better what would need to be done to effectively

carry the Internet protocols over satellite systems. At this meeting Dr. Shepard gave a talk explaining how

TCP's congestion control algorithms work and showed plots of traces from simulation runs showing packet-

by-packet what happens when the delay is large, and how there is a sensitivity to the amount of buffering
available at the bottleneck.

This talk clearly indicated to those present that opening the end-to-end window (as the extensions in

RFC1323 allow), while necessary, is not sufficient to achieve reasonable performance over a geosynchronous

satellite link of moderate rate. We were just beginning to understand the issue regarding buffering at

the bottleneck and delay-bitrate product, and while responding to a question, Dr. Shepard realized that

this problem is not easily solved locally by the deployers of the satellite link because the bottleneck may
be elsewhere in the network. The deployers of the satellite link may have no control over the amount of

buffering available elsewhere in the network.
A different perception that some had was that a problem is that packets lost due to errors can drive the

congestion control algorithms to inappropriate places. This is true. But what is not true is that prevent-
ing error losses solves this problem. Packets lost due to congestion can also drive the congestion control

algorithms to inappropriate places, and because the delay is longer over satellite links, TCP's congestion

algorithms can take much longer to recover, and poor throughput will occur while the recovery is underway.

8 Further simulation study

After the January meeting, we investigated the dependency on the amount of buffering available at the

bottleneck by simulating each of the exiting TCP models available in the LBL NS simulator while varying

the amount of buffering. In each of these studies, a single TCP was made to transfer bulk data over a
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Figure 6: A plot illustrating where every other packet is dropped once the queue at the bottleneck is full.

Starting with packets near the asterisk, every other packet is dropped at the queue at the bottleneck. Every

other packet is dropped because they are arriving at the queue at precisely twice the rate at which packets

are leaving the queue. Each packet that leaves the queue generates one returning packet to carry the

acknowledgement. Each returning packet causes two new packets to be sent.

1.5 Mbit/second link with a round-trip time of one-half second. The delay-bitrate product for this path

corresponds about 90 packets worth of data (assuming 1024 bytes per packet). The number of packet buffers
available at the bottleneck was set to 6, 20, 60, and 200 on different runs. The end-to-end flow-control

window was set large enough so that it would never be a factor.

Examination of the plots from these simulations taught us something about the slow-start algorithm. The

slow-start algorithm is usually described as an exponential increase in the number of packets outstanding:

one packet in the first round trip time, and then a doubling of the number of packets in each subsequent

round-trip time. But this simple explanation (while accurate) neglects to mention that the round-trip time

grows as the number of packets filling queues in the network increases.
The slow-start algorithm is more directly described as: start with one packet, then for each acknowledge-

ment, increase by one the number packets we permit to be outstanding (sent but not yet acknowledged).

The effect is to send two packets for each acknowledgement received (assuming the receiver is not dallying).

Since packets exit the network at the rate of the bottleneck link, the effect of the slow-start algorithm is to
send at twice the rate of the bottleneck link, until the sender learns of the first dropped packet. The result

of this is that the queue at the bottleneck link grows at the same rate as packets go through the bottleneck
link, and once full, every other packet is dropped (until the sender learns of the first drop, which will take a

full round-trip time, which at this point is inflated by the full queue). Every other packet is dropped because

each packet that leaves the queue generates an acknowledgement, which causes two packets to be sent by the

sender. So for each new opening in the queue, two packets axe sent, and only one of them can fit. Figure 6

shows where this happens.
These simulations also demonstrated the value of selective acknowledgements. The TCP models that

did not incorporate the RFC2018 extension for selective acknowledgements all performed quite poorly while
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Figure 7: The behavior of the nevreno TCP module in the LBL NS simulator. During the recovery after

every other packet is lost at the end of the slow-start episode, it takes one full round trip to recover each
packet.

recovering from this pessimal pattern of packet losses. In general, they either retransmit many packets
unnecessarily (in Figure 6, most every packet is retransmitted, even though only every other packet was

actually missing), or take one full round-trip time to recover each lost packet (which is shown in Figure 7).

In the simulations of the two TCP models that do include use of selective acknowledgements, only the missing

packets were retransmitted.

The behavior of the FACK TCP (one of the two which included use of selective acknowledgements) was

particularly impressive. It manages to recover quickly, losing little or no time, and if the resulting congestion
window does not limit throughput, data is delivered to the receiver at the full rate of the bottleneck link

with no gap in performance due to the packets lost (even though a full delay-bitrate product in packets were
lost). With FACK and sufficient buffering at the bottleneck, the the link never goes idle and never carries

any unnecessary retransmissions. So full use of the bottleneck link is achieved. This can be seen in Figure 8.

To further study the consequences of varying the amount of buffering at the bottleneck link, the FACK

TCP was simulated over the same topology, but with amounts of buffering at the bottleneck link corre-

sponding to 10, 20, 30, 40, 50, 60, ..., 190, and 200 packets. These simulations confirmed the well-known
rule-of-thumb that a router should have enough buffer space to hold one round-trip-time's worth of traffic.

Below 90 packets of buffering, performance suffered due to the congestion window being reduced to one-half

of the value it had when the sender first learned of a loss. With sufficient buffer space at the bottleneck, the

resulting congestion window (after the loss was known to the sender and the initial slow-start episode ends)

was still large enough to make full use of the available bandwidth.

9 Memphis IETF

At the Memphis IETF, we participated in the TCPSAT BOF, a session called to discuss forming a group

within the IETF to document the problems with, and any existing methods of improving performance of,
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Figure 8: The behavior of the lack TCP module in the LBL NS simulator. The FACK algorithm manages

to recover in this case from the pessimal pattern of lossage at the end of the slow-start episode without

falling behind in performance at all. This can be seen where after the recovery, the returning ACKs fall on

the same line as the ACKs before the period of recovery.

TCP over satellites. Dr. Shepard spoke at this meeting and explained the problem with the congestion-related
algorithms. He also pointed out that for the receiver side, we now know what we need to do (RFC1323,

RFC2018, and open the window wide). But that for the sender side, more research may be needed. This is

good news, because we can without doing any more research encourage implementors to include the RFC1323

and RFC2018 extensions and also open the TCP receive windows as wide as possible.

10 Four-packet start

After the Memphis IETF, we did a quick study of the effects of starting the initial TCP slow-start algorithm

with four packets instead of one. An Internet Draft proposing a four-packet start from Sally Floyd had

already been distributed informally, and many people were discussing it. The motivation for this is that if it

takes a fixed number of round-trips to perform an operation (which is usually the case for TCP transfers),

and the round-trip delay is increased (perhaps because a satellite link has been introduced), then we should
strive to complete the operation in as few round trip times as possible. In the first two round-trip times of

a normal TCP slow-start, only three packets are transferred, and the TCP has very little chance to learn

anything useful about the congestion-related characteristics of the path (other than if it is working or not).

So the proposal was to begin TCP transfers with a congestion window which would allow four packets to be
launched.

Concerns had been raised that this four-packet-start change may cause trouble for TCPs sending to

users who are dialed into modem pools (which may have as few as three buffers). My study was limited

to determining the consequences of starting with four packets over a path with a slow modem at then end

and with only three packet buffers (which can queue only two packets while another single packet is being

transmitted).

12



Theresultsof thisstudywerewrittenup in anInternetDraft (ID) (copyattached).ThisID explains
thatwhilesomepacketsaredeliveredlaterwitha4-packetstart,thereis long-termeffectonthroughputor
latency.Identicalpatterns(moduloa shift in time)ofpackettransmissionandlossoccurin thetwocases
(aone-packetor four-packetstart).

11 Testing real FACK TCP

We were' concerned that the simulations in NS simulator may be missing some important issue, since the

TCP models in the NS simulator are only brief approximations of a real TCP implementation. An experi-

mental implementation of FACK TCP was available from the Networking Research Group at the Pittsburgh

Supercomputing Center, and we were also eager to see the FACK algorithms in action in a real TCP. This

motivated the construction of a small (two machine) test bed. The the test bed consisted of two machines
running NetBSD, with the FACK TCP replacing the regular TCP in both systems. The DUMMYNET delay

simulator [4] was included to simulate delays, link speeds, and queue limits.

A few test runs on the test bed confirmed our findings of the queue-overrun behavior of the slow-start

algorithm. Once the queue is full, every other packet is dropped until the sender learns of the first dropped

packet (which takes one RTT or more).

The FACK TCP does in fact perform remarkably well. It recovers from the loss by resending only the

packets which need to be resent, and it keeps the bottleneck link active at all times (so it never sits idle

wasting time). In the simple topologies we tested, it would be impossible to improve upon the perceived

performance of FACK TCP for transfers of long files. It may be possible to reduce the number of packets
sent needlessly (i.e. those sent but dropped before the bottleneck) but that would not improve upon the

throughput or latency seen by the user of the FACK TCP. We believe that TCPs employing the FACK

algorithms should be the benchmark against which performance is measured when testing the performance
of TCP over satellite links.

This experimental implementation of FACK TCP (from the PSC) does have a few problems which should

be addressed before advocating its widespread use. The first is a bug (which perhaps has nothing to do with

FACK or SACK) which causes delayed acknowledgements to perform incorrectly. (In our tests we patched

around this bug by disabling delayed ACKs.) The other bug (or bugs?) is that the FACK TCP appears to
cause unreliability of the system. A NetBSD workstation in regular daily use with this experimental FACK

TCP installed crashes a few times per week, apparently due to a problem in TCP.

12 Queue overrun observations conveyed to End-to-End Research

Group

The thoughts resulting from our study of the slow-start algorithm's overrunning of the buffers at the bot-

tleneck link were written up and conveyed in a private e-mail message to Craig Partridge prior to a meeting

of the End-to-End research group meeting in the summer. A very-slightly edited copy of that message is

included (attached).

Dr. Partridge wrote an Internet Draft to capture an idea discussed at an End-to-End Research Group

meeting. The idea is that perhaps a box inserted in the network near the satellite link could cause the source
to pace its transmissions by pacing the ACKs that are being returned to it. A copy of this draft is included

(attached).

13 IETF Munich

We attended the IETF in Munich in August 1997. A number of members of the End-to-End Research Group

attended the TCP Over Satellite Working Group meeting. Dominating the meeting was a discussion about

the need for pacing to avoid the queue-overrun problem caused by the slow-start algorithm.
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14 IEEE Network publication

A paper describing performance issues involved with TCP and IP over satellites links was written and appears

in the October 1997 issue of IEEE Network. Dr. Glover requested we write and publish this to help clarify

what is and is not a problem with the IP and TCP protocols when long delays are involved. A copy of this

publication is included (attached).

15 Conclusion and Future Work

In the first year of this project, we believe we have uncovered the need for pacing in TCP senders to avoid

a problem where the slow-start algorithm is likely to overrun a queue at the bottleneck link. Exactly how

this pacing should work is unclear at this time. Further thought, implementation, and experimentation will
be needed.
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To: Craig Partridge <craig@aland.bbn.com>

Subject: pacing
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Sender: shep@marengo.bbn.com

Craig,

. • .]

I have looked at the TCPs in the LBL simulator, and examined their

behavior in situations where the delay-bitrate product is 90

packets. (Remember that the simulator simulates just packets, not

TCP.) SACK reveals something I never understood previously. The

slow start algorithm sends at twice the rate of the bottlneck, so

once the queue overflows, every other packet gets dropped (for a

full RTT time). For example, with a 90-packet delay-bitrate

product, and 90 packets of buffering at the bottleneck, 90 packets

will be dropped out of 180 packets sent in the round trip time

immediately proceeding the arrival of the first duplicate acks

(which are the first notification to the sender that something is

amiss.)

The FACK tcp (in the LBL simulator) does a remarkable job of

recovering from this pessimal lossage without losing any ground.

[...]

So what is the problem that a satellite link in the net adds?

It adds a link with longer-than-usual delay, increasing the

delay-bandwidth product. Hence need large windows. (Need window

scaling, in BSD TCP need to increase socket buffer size at both

sender and receiver, probably need SACK, 4k-start is probably a

good idea, etc.)

But if buffering at bottleneck is significantly less than a

delay-bitrate product, slow-start in its current form is incapable

of getting ssthresh set to a reasonable value because by sending at

twice the rate of the bottleneck, it will overrun the queue.

*** Slow start learns the cwnd size it must not exceed if it

wants to transmit at twice the rate of the bottleneck without

overflowing a queue. ***

If you want to learn the window size you should use to send at the

rate of the bottleneck, then you need to "tip over" and send at the

rate of the bottleneck. (With perhaps a handful of extra packets

in the net to ensure that you are pushing hard enough to learn something.

When I explained this to DDC, he pointed out that if you set

ssthresh correctly in the first place, then you'll get just the

"tip over" effect that I want.

I said, "but'not if there's not enough buffering," thinking that it

required a full delay-bitrate product's worth at the bottleneck.

But I was off by a factor of two. If the bottlneck has at least one-half

the delay-bitrate product in buffering, then if you somehow get ssthresh

set correctly (((perhaps using Janey Hoe's method if it should prove

robust enough (((but my guess is that something which made use of more

data from the returning acks would be better))) ))), slow-start can get

you going up to full speed in "just a few" round trips.

That is so because if you set ssthresh correctly, then at the point you

tip over, you will have put in flight a full delay-bitrate product's worth

of packets, but in one half of a round-trip time. In that time, half

will have drained from the queue, and the other half will be sitting in



the queue filling it up.

((( Note, with ssthresh set to plus infinity at the start, then in order
to win at the end of the slow-start episode, you need to have a full
delay-bitrate product's worth of buffering so that from the point of view
of the sender, it can get to a cwnd which is *twice* the delay-bitrate

product before it first learns of the loss. In the ninety-packet

delay-bitrate product case (Tl-line, 1/2 second round trip time,

1024-byte packets) you have to get to 180 packets outstanding, half of

which will be in-flight and half of which are sitting in the queue, so

that when ssthresh is set to 1/2 cwnd, it gets a value of 90 packets.)))

But there is still a problem, if the buffering available at the bottleneck

router is less than one half of the delay-bitrate product experienced by a

connection, then even with ssthresh set correctly, the queue will be

overrun before the sender has managed to put a full delay-bitrate

product's worth into the net. (Because the sender is sending at twice

the rate of the bottlneck link, it overruns a queue that it would not

overrun at the proper rate.)

It is unreasonable to expect that the party responsible for maintaining

the router at the bottleneck to have any awareness that some of of the

traffic through it is experiencing long delays because of long-delay links

elsewhere in the net.

Hence probing should be done at the rate of returning acks, not at twice

the rate of the returning acks. This will require some amount of pacing

timers to pace out the packets, but not many pacing timer interrupts need

be taken by the operating system. Incoming acks can still be used to pace

out a majority of slow-start packets. (I appeal to a visual argument on

my pencel-marked-up plot at this point.) Pacing timers need not be

per-packet either. It'd probably suffice to release a few packets each

time the pacing timer goes off.

Pacing timers should not be viewed as overly burdensom for an operating

system in 1997. In an extreme example, imagine the rate of the bottleneck

is 600 million bits per second. That's 75 million bytes per second, or

fifty-thousand 1500-byte packets per second. If a pacing timer released

five packets on each firing, then only 10,000 pacing-timer interrupts per

second need be taken. That's once every i00 micro-seconds. 10,000

interrupts per second on a 100 MHz Pentium is like taking I00 interrupts

per second on a VAX-II/780. On any machine capable of noticing a 600

megabit-per-second bottlneck in the net, 10,000 interrupts per second

should not be a big deal.

. • .]

-Tim
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WhenTCPStarts Up With Four Packets Into Only Three Buffers

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups mayalso distribute
working documentsas Internet-Drafts.

Internet-Drafts are draft documentsvalid for a maximumof six months
and maybe updated, replaced, or obsoleted by other documentsat any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
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"lid-abstracts.txt" listing contained in the Internet-Drafts Shadow

Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),

munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or

ftp.isi.edu (US West Coast).

This memo provides information for the Internet community. This memo

does not specify an Internet standard of any kind. Distribution of

this memo is unlimited.

Background and Abstract

Sally Floyd has proposed that TCPs start their initial slow start by

sending as many as four packets (instead of the usual one packet) as

a means of getting TCP up-to-speed faster. (Slow starts instigated

due to timeouts would still start with just one packet.) Starting

with more than one packet might reduce the start-up latency over

long-fat pipes by two round-trip times. This proposal is documented

further in [I] and in [2] and we assume the reader is familiar with

the details of this proposal.

On the end2end-interest mailing list, concern was raised that in the

(allegedly common) case where a slow modem is served by a router

which only allocates three buffers per modem (one buffer being

Shepard & Partridge [Page i]
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transmitted while two packets are waiting), that starting with four
packets would not be good because the fourth packet is sure to be
dropped.

Vern Paxson replied with the comment(amongother things) that the
four-packet start is no worse than what happens after two round trip
times in normal slow start, hence no new problem is introduced by
starting with as manyas four packets. If there is a problem with a
four-packet start, then the problem already exists in a normal slow-
start startup after two round trip times when the slow-start
algorithm will release into the net four closely spaced packets.

This memois to document that in the case of a 9600 bps modemat the
edges of a fast Internet where there are only 3 buffers before the
modem(and the fourth packet of a four-packet start will surely be
dropped), no significant degradation in performance is experienced
with a four-packet start whencomparedwith a normal slow start
(which starts with one packet).

Scenario and experimental setup

The scenario studied and simulated consists of three links between
the source and sink. The first link is a I00 Mbps link with no
delay. (It was included to have a meansof logging the returning ACKs
at the time they would be seen by the sender.) The second link is a
1.5 Mbps link with a 25 ms one-way delay. The third link is a 9600
bps link with a 150 ms one-way delay. The queue limits for the
queues at each end of the first two links were set to 100 (a value
sufficiently large that this limit was never a factor). The queue
limits at each end of the 9600 bps link were set to 3 packets (whiCh
can hold at most two packets while one is being sent).

Version 1.2a2 of the the NS simulator (available from LBL) was used
to simulate both one-packet and four-packet starts for each of the
available TCPalogorithms (tahoe, reno, sack, fack) and the
conclusion reported here is independent of which TCPalgorithm is
used (in general, we believe). The "tahoe" module will be used to
illustrate what happens in this memo. In the 4-packet start cases,
the "window-init" variable was set to 4, and the TCP implementations

were modified to use the value of the window-init variable only on

connection start, but to set cwnd to 1 on other instances of a slow-

start. (The tcp.cc module as shipped with ns-l.2a2 would use the

window-init value in all cases.)

The packets in simulation are 1024 bytes long for purposes of

determining the time it takes to transmit them through the links.

(The TCP modules included with the LBL NS simulator do not simulate

the TCP sequence number mechanisms. They use just packet numbers.)
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Observations are madeof all packets and acknowledgementscrossing
the i00 Mbps no-delay link. (All descriptions below are from this

point of view.)

What happens with normal slow start

At time 0.0 packet number 1 is sent.

At time 1.222 an ack is received coverlng packet number i, and

packets 2 and 3 are sent.

At time 2.444 an ack is received coverlng packet number 2, and

packets 4 and 5 are sent.

At time 3.278 an ack is received coverlng packet number 3, and

packets 6 and 7 are sent.

At time 4.111 an ack is received coverlng packet number 4, and

packets 8 and 9 are sent.

At time 4.944 an ack Is received coverlng packet number 5, and

packets 10 and II are sent.

At time 5.778 an ack is received coverlng packet number 6, and

packets 12 and 13 are sent.

At time 6.111 a duplicate ack is recieved (covering packet number 6).

At time 7.444 another duplicate ack is received (covering packet

number 6).

At time 8.278 a third duplicate ack is received (covering packet

number 6) and packet number 7 is retransmitted.

(And the trace continues...)

What happens with a four-packet start

At time 0.0, packets i, 2, 3, and 4 are sent.

At time 1.222 an ack is received oovering packet number i, and

packets 5 and 6 are sent.

At time 2.055 an ack is received covering packet number 2, and

packets 7 and 8 are sent.

At time 2.889 an ack is received covering packet number 3, and

packets 9 and i0 are sent.
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At time 3.722 a duplicate ack is received (covering packet number 3).

At time 4.555 another duplicate ack is received (covering packet
number 3).

At time 5.389 a third duplicate ack is received (covering packet
number 3) and packet number4 is retransmitted.

(And the trace continues...)

Discussion

At the point left off in the two traces above, the two different
systems are in almost identical states. The two traces from that
point on are almost the same, modulo a shift in time of (8.278 -
5.389) = 2.889 seconds and a shift of three packets. If the normal
TCP (with the one-packet start) will deliver packet N at time T, then
the TCPwith the four-packet start will deliver packet N - 3 at time
T - 2.889 (seconds).

Note that the time to send three 1024-byte TCPsegments through a
9600 bps modemis 2.66 seconds. So at what time does the four-
packet-start TCPdeliver packet N? At time T - 2.889 + 2.66 = T -
0.229 in most cases, and in somecases earlier, in somecases later,
because different packets (by number) experience loss in the two
traces.

Thus the four-packet-start TCPis in somesense 0.229 seconds (or
about one fifth of a packet) aheadof where the one-packet-start TCP
would be. (This is due to the extra time the modemsits idle while
waiting for the dally timer to go off in the receiver in the case of
the one-packet-start TCP.)

The states of the two systems are not exactly identical. They differ

slightly in the round-trip-time estimators because the behavior at

the start is not identical. (The observed round trip times may differ

by a small amount due to dally timers and due to that the one-packet

start experiences more round trip times before the first loss.) In

the cases where a retransmit timer did later go off, the additional

difference in timing was much smaller than the 0.229 second

difference discribed above.

Conclusion

In this particular case, the four-packet start is not harmful.
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Non-conclusions, opinions, and future work

A four-packet start would be very helpful in situations where a long-
delay link is involved (as it would reduce transfer times for
moderately-sized transfers by as muchas two round-trip times). But
it remains (in the authors' opinions at this time) an open question
whether or not the four-packet start would be safe for the network.

It would be nice to see if this result could be duplicated with real
TCPs, real modems,and real three-buffer limits.
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i. Introduction

Supposeyou want TCPimplementations to be able to fill a 155 Mb/s
path. Further suppose that the path includes a satellite in a
geosynchronous orbit, so the round trip delay through the path is at

least 500 ms, and the delay-bandwidth product is 9.7 megabytes or

more.

If we further assume the TCP implementations support TCP Large

Windows and PAWS (many do), so they can manage 9.7 MB TCP window,

then we can be sure the TCP will eventually start sending at full
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path rate (unless the satellite channel is very lossy). But it may
take a long time to get the TCPup to full speed.

One (of several) possible causes of the delay is a shortage of
buffering in routers. To understand this particular problem,
consider the following idealized behavior of TCPduring slow start.
During slow start, for every segmentACKed, the sender transmits two
new segments. In effect, this behavior meansthe sender is
transmitting at *twice* the data rate of the segments being ACKed.

And keep in mind the separation between ACKs represents (in an ideal

world) the rate segments can flow through the bottleneck router in

the path. So the sender is bursting data at twice the bottleneck

rate, and a queue must be forming during the burst. In the simplest

case, the queue is entirely at the bottleneck router, and at the end

of the burst, the queue is storing half the data in the burst. (Why

half? During the burst, we transmitted at twice the bottleneck rate.

Suppose it takes one time unit to send a segment on the bottlenecked

link. During the burst the bottleneck will receive two segments in

every time unit, but only be able to transmit one segment. The

result is a net of one new segment queued every time unit, for the

life of the burst.)

TCP will end the slow start phase in response to the first lost

datagram. Assuming good quality transmission links, the first lost

datagram will be lost because the bottleneck queue overflowed. We'd

like that loss to occur in the round-trip after the slow start

congestion window has reached the delay-bandwidth product. Now

consider the buffering required in the bottleneck link during the

next to last round trip. The sender will send an entire delay-

bandwidth worth of data in one-half a round-trip time (because it

sends at twice the channel rate). So for half the round-trip time,

the bottleneck router is in the mode of forwarding one segment while

receiving two. (For the second half of the round-trip, the router is

draining its queue). That means, to avoid losing any segments, the

router must have buffering equal to half the delay-bandwidth product,

or nearly 5 MB.

Most routers do not have anywhere near 5 MB of buffering for a single

link. Or, to express this problem another way, because routers do

not have this much buffering, the slow start stage will end

prematurely, when router buffering is exhausted. The consequence of

ending slow start prematurely is severe. At the end of slow start,

TCP goes into congestion avoidance, in which the window size is

increased much more slowly. So even though the channel is free,

because we did not have enough router buffering, we will transmit

slowly for a period of time (until the more conservative congestion

avoidance algorithm sends enough data to fill the channel).
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2. What to Do?

So how to get around the shortage of router buffering?

2.1 Cascading TCPs

Oneapproach is to use cascading TCPs, in which we build a custom TCP
for the satellite (or bottleneck) link and insert it between the
sender's and receiver's TCPs, as shownbelow:

sender Ground station -- satellite -- ground station -- receiver

i i i i i i
i loop 1 I I loop 2 I I loop 3 i
i I I I I [

This approach can work but is awkward. Among its limitations are:

the buffering problem remains (at points of bandwidth mismatches,

queues will form); the scheme violates end-to-end semantics of TCP

(the sender will get ACKs for data that has not and may never reach

the receiver); and it doesn't work with encryption (i.e. if data

above the IP layer is encrypted).

2.2 ACK Spacing

Another approach is to find some way to spread the bursts, either by

having the sender spread out the segments, or having the network

arrange for the ACKs to arrive at the sender with a two segment

spacing (or larger).

Changing the sender is feasible, although it requires very good

operating system timers. But it has the disadvantage that only

upgraded senders get the performance improvement.

Finding a way for the network to space the ACKs would allow TCP

senders to transmit at the right rate, without modification.

Furthermore, it can be done by a router. The router simply has to

snoop the returning TCP ACKs and spread them out. (Note that if the

transmissions are encrypted, in many scenarios the router can still

figure out which segments are likely TCP ACKs and spread them out).

There are some difficult issues with this approach. The most notable

ones are:

i. What algorithm to use to determine the proper ACK spacing.
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2. Related to (i), it maybe necessary to knownwhena TCPis in
slow-start vs. congestion-avoidance, as the desired spacing
between ACKsis likely to be different in the two phases.

3. What to do about assymetric routes (if anything). If the ACKs
do not return through the ACK-spacing router, it may not be
possible to do ACKspacing.

Despite these challenges the approach has appeal. Changing software
in a few routers (particularly those at likely bottleneck links) on
high delay-bandwidth paths could give a performance boost to lots of
TCPconnections.

Credit and Disclaimer

This memo presents thoughts from a discussion held at the recent

meeting of the End-To-End (E2E) Research Group. The particular idea

of ACK spacing was developed by during the meeting by Mark Handley

and Van Jacobson in response to an issue raised by the author, and

was inspired, in part by ideas to enhance wireless routers to improve

TCP performance [i].

The material presented is a half-baked suggestion and should not be

interpreted as an official recommendation of the Research Group.
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Abstract

Achieving high data rates using TCP/IP over satellite nehvorks can be difficult. This
article explains some of the reasons TCP/IP has difficulty with satellite links. We
present solutionsto some problems, and describe the state of the research on some
of the unsolved problems.-

__ of TCPfIP impact performance. We then pre-

|:_" _,]_'sent issues specific to satellites aninformal)
_,_.j about how well TCP/IP performs over satellite

_" links. S0me reports indicate TCP/1P throughput
is poor. Others report that TCP/IP throughput is quite good.
It is very difficult to determine which reports deserve more
credence.

This article tries to clarify the situation. Our approach is to
f'urst discuss TCP/IP performance analytically, indicating what
features of TCP/IP impact performance. We then present
issues specific to satellites and their solutions, if known.

An Overview of TCP and IP Performance

CP/IP is a surprising complex protocol suite and more than
ne person has written an entire book on the details of its

operation, t Rather than try to summarize all of TCP/IP, our
goal in this section is to present those aspects of TCP/IP that
most directly affect TCP/IP throughput. More specifically, we
will focus on a particular aspect of throughput, namely the
effective transmission rate of valid data (sometimes called
goodput) that a TCPflP connection can achieve.

IP Throughput Issues

IP (the Interact Protocol) is the network layer protocol in the
TCP/IP protocol suite. IP's function is to provide a protocol
to integrate heterogeneous networks together. In brief, a
media-specific way to encapsulate IP datagrams is def'med for
each media (e.g., satellite, Ethernet, or Asynchronous Trans-
fer Mode). Devices called touters move IP datagrams between
the different media and their encapsulations. Routers pass IP
datagrams between different media according to routing infor-
mation in the IP datagram. This mesh of different media
interconnected by routers forms an IP internet, in which all

This work wasfunded by NASA Lewis Research Center.

t Two very good books on the subject are [1] and [2].

hosts on the integrated mesh can communicate with each
other using IP. 2

The actual service IP implements is unreliable datagram
delivery. IP simply promises to make a reasonable effort to
deliver every datagram to its destination. However IP is free
to occasionally lose datagrams, deliver datagrams with errors
in them, and duplicate and reorder datagrams.

Because IP provides such a simple service, one might
assume that IP places no limits on throughput. Broadly speak-
ing, this assumption is correct. IP places no constraints on
how fast a system can generate or receive datagrams. A sys-
tem transmits IP datagrams as fast as it can generate them.
However, IP does have two features that can affect through-
put: the IP T'tme to Live and IP Fragmentation.

IP Time To Live _ In certain situations, IP datagrams may
loop among a set of routers. These loops are sometimes tran-
sient (a datagram may loop for a while and then proceed to
its destination) or long-lived. To protect against datagrams
circulating semipermanently, IP places a limit on how long a
datagram may live in the network.

The limit is imposed by a Time To Live (TTL) field in the
IP datagram. The field is decremented at least once at every
router the datagram encounters and when the TTL reaches
zero, the datagram is discarded.

Originally, the IP specification also required that the TTL also
be decremented at least once per second. Since the TTL field is
8-bits wide, this means a datagram could live for approximately
4.25 minutes. In practice, the injunction to decrement the TTL
once a second is ignored, hut, perversely, specifications for high-
er layer protocols like TCP usually assume that the maximum
time a datagram can live in the network is only two minutes.

2The term interact is a generic wordfor a group of interconnected net.
works. The Internet is theglobal 1P internet. Recen@ the term intranerhas
evolvedfrom its original meaning (an adjective meaningon a singlephysi-
cal network [3]) into a popular way to describe an [P internetentire_
within an organizatiott



The significance of the maximum datagram lifetime is
that it means higher layer protocols must be careful not to
send two similar datagrams (in particular, two datagrams
which could be confused for each other) within a few min-
utes of each other. This limitation is particularly impor-
tant for sequence numbers. If a higher layer protocol
numbers its datagrams, it must ensure that it does not
generate two datagrams with the same sequence number
within a few minutes of each other, lest IP deliver the sec-
ond datagram first and confuse the receiver. We discuss
this issue more in the next section when we discuss TCP

sequence space issues.

/P Fragmentation -- Different network media have differ-
ent limits on the maximum datagram size. This limit is
typically referred to as the Maximum Transmission Unit
(MTU). When a router is moving a datagram from one
media to another, it may discover that the datagram, which
was of legal size on the inbound media, is too big for the
outbound media. To get around this problem, IP supports
fragmentation and reassembly, in which a router can break
the datagram up into smaller datagrams to fit on the out-
bound media. The smaller datagrams are reassembled into

the original larger datagram at the destination (not the
intermediate hops).

Fragments are identified using a fragment offset field
(which indicates the offset of the fragment from the start of
the original datagram). Datagrams are uniquely identified by
their source, destination, higher layer protocol type, and a 16-
bit IP identifier (which must be unique when combined with
the source, destination and protocol type).

Observe that there's a clear link between the TrL field and

the IP identifier (first identified by [4]). An IP source must
ensure that it does not send two datagrams with the same IP
identifier to the same destination, using the same protocol
within a maximum datagram lifetime, or fragments of two dif-
ferent datagrams may be incorrectly combined. Since the IP
identifier is only 16 bits, if the maximum datagram lifetime is
two minutes, we are limited to a transmission rate of only 546
datagrams per second. That's clearly not fast enough. The
maximum IP datagram size is 64 KB, so 546 datagrams is, at
best, a bit less than 300 Mb/s.

The problem of worrying about IP identifier consumption
has largely been solved by the development of MTU Discov-
ery a technique for IP sources to discover the MTU of the
path to a destination [5]. MTU Discovery is a mechanism that
allows hosts to determine the MTU of a path reliably. The
existence of MTU discovery allows hosts to set the Don't
Fragment (DF) bit in the IP header, to prohibit fragmenta-
tion, because the hosts will learn through MTU discovery if
their datagrams are too big. Sources that set the DF bit need
not worry about the poss_ility of having two identifiers active
at the same time. Systems that do not implement MTU dis-
covery (and thus cannot set the DF bit) need to be careful
about this problem.

TCP Throughput Issues
The Transmission Control Protocol (TCP) is the primary
transport protocol in the TCP/IP protocol suite. It imple-
ments a reliable byte stream over the unreliable datagram
service provided by IP. As part of implementing the reliable
service, TCP is also responsible for flow and congestion con-
trol: ensuring that data is transmitted at a rate consistent
with the capacities of both the receiver and the intermediate
links in the network path. Since there may be multiple TCP
connections active in a link, TCP is also responsible for
ensuring that a link's capacity is responsibly shared among
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the connections using it. As a result, most throughput issues
are rooted in TCP.

This section examines the major features of TCP that affect
performance. Many of these performance issues have been
discovered over the past few years as link transmission speeds
have increased and so called high delay-bandwidth paths 3
(paths where the product of the path delay and available path
bandwidth is big) have become common. To begin to illustrate
the challenge, consider that in the 1970s when TCP was being
developed, the typical long link was a 56 kb/s circuit across the
United States, with a delay-bandwidth product of approxi-
mately 0.250 x 56,000 bits or 1.8 K.B, while today's Internet
contains 2.4 Gb/s circuits crossing the US, which boast a

delay-bandwidth product of 75 MB.

Throughput Expectations _ Before presenting the performance
issues for TCP, it is worth talking briefly about throughput

goals.
TCP throughput determines how fast most applications can

move data across a network. Application protocols such as
(the World Wide Web protocol), and the File Transfer

Protocol (FTP), rely on TCP to carry their data. So TCP per-
formance directly impacts application performance.

While there are no formal TCP performance standards,
TCP experts generally expect that, when sending large
datagrams (to minimize the overhead of the TCP and IP
headers), a TCP connection should be able to fill the avail-
able bandwidth of a path and to share the bandwidth with
other users. If a link is otherwise idle, a TCP connection is

expected to be able to fill it. If a link is shared with three
other users, we expect each TCP to get a reasonable share
of the bandwidth.

These expectations reflect a mix of practical concerns.
When users of TCP acquire faster data lines, they expect their
TCP transfers to run faster. And users acquire faster lines for
different reasons_ Some need faster lines because as their
aggregate traffic has increased, they have more applications
that need network access. Others have a particular application
that requires more bandwidth. The requirement that TCP
share a link effectively reflects the needs of aggregation; all
users of a faster link should see improvement. The require-
ment that TCP fill an otherwise idle link reflects the needs of

more specialized applications.
TCP Sequence Numbers -- TCP keeps track of all data in
transit by assigning each byte a unique sequence number. The
receiver acknowledges received data by sending an acknowl-

STo avoid confusi6n,wenotethatthedata networkingcommunity,unlike
someengineeringcommunities,usesthetermbandwidthinterchangeably
with bitrate.



edgment which indicates that the receiver has received all
data up to a particular byte number.

TCP allocates its sequence numbers from a 32-bit
wraparound sequence space. To ensure that a given sequence
number uniquely identifies a particular byte, TCP requires that
no two bytes with the same sequence number be active in the
network at the same time. Recall the early discussion of IP
datagram lifetime indicated a datagram was assumed to live
for up to two minutes. Thus when TCP sends a byte in an IP
datagram, the sequence number of that byte cannot be reused
for two minutes. Unfortunately, a 32-bit sequence space spread
over two minutes gives a maximum data rate of only 286 Mb/s.

To fix this problem, the Internet End-to-End Research
Group devised a set of TCP options and algorithms to extend
the sequence space. These changes were adopted by the Inter-
net Engineering Task Force (IETF) and are now part of the
TCP standard. The option is a timestamp option [6] which
concatenates a timestamp to the 32-bit sequence number.
Comparing timestamps using an algorithm caUed PAWS (Pro-
tection Against Wrapped Sequence numbers) makes it possi-
ble to distinguish between two identical sequence numbers
sent less than two minutes apart.

Depending on the actual granularity of the timestamp (the
IETF recommends between 1 second and 1 millisecond), this
extension is sufficient for link speeds of between 8 Gb/s and 8
Tb/s (terabits per second).

TCP Tronsmission Window m The purpose of the transmission
window is to allow the receiving TCP to control how much
data is being sent to it at any given time. The receiver adver-
tises a window size to the sender. The window measures, in
bytes, the amount of unacknowledged data that the sender
can have in transit to the receiver. The distinction between

the sequence numbers and the window is that sequence num-
bers are designed to allow the sender to keep track of the
data in flight, while the window's purpose is to allow the
receiver to control the rate at which it receives data.

Obviously, if a receiver advertises a small window (due, per-
haps, to buffer limitations) it is imposs_le for TCP to achieve
high transmission rates. And many implementations do not
offeraverylargewindow size(afew kilobytesistypical).

However, thereisa more seriousproblem.The standard
TCP window sizecannotexceed 64 KB, becausethe fieldin
theTCP headerused toadvertisethewindow isonly 16bits
wide.This limitsthe TCP effectivebandwidth to2Isbytes
divided by the round-trip time of the path [7]. For long delay
links, such as those through satellites with a geosynchronous
orbit (GEO), this limit gives a maximum data rate of just
under 1 Mb/s.

As part of the changes to add timestamps to the sequence
numbers, the End-To-End Research Group and IETF also
enhanced TCP to negotiate a window scaling option. The
option multiplies the value in the window field by a constant.
The effect is that the window can only be adjusted in units of
the multiplier. So if the multiplier is 4, an increase of I in the
advertised window means the receiver is opening the window
by4 bytes.

The window size is limited by the sequence space (the win-
dow must be no larger than one half of the sequence space so
that it is unambiguously clear that a byte is inside or outside
the window). So the maximum multiplier permitted is 2 l* .
This means the maximum window size is 230 and the maxi-

mum date rate over a GEO satellite link is approximately 15
Gb/s. Given we have achieved Tb/s data rates in terrestrial
fiber, this value is depressingly small, but in the absence of a
major change to the TCP header format it is not dear how to
fix the problem.

Slow Start m When a TCP connection starts up, the TCP
specification requires the connection to be conservative and
assume that the available bandwidth to the receiver is small.
TCP is supposed to use an algorithm called slow start [8], to
probe the path to learn how much bandwidth is available.

The slow start algorithm is quite simple and based on data
sent per round trip. At the start, the sending TCP sends one
TCP segment (datagram) and waits for an acknowledgment.
When it gets the acknowledgment, it sends two segments.
Many TCPs acknowledge every other segment they receive,* so
the slow start algorithm effectively sends 50 percent more data

everyround trip. Itcontinuesthisprocess(sending50 percent
more dataeach round trip)untila segmentislost.Thislossis
interpreted as indicating congestionand theconnectionscales

back to a more conservative approach (described in the next
section) for probing bandwidth for the rest of the connection.

There are two problems with the slow start algorithm on
high-speed networks. First, the probing algorithm can take a
long time to get up to speed. The time required to get up to
speed is R(I + logl.s (DB/I)), where R is the round-trip time,
DB is the delay-bandwidth product and I is the average seg-
ment length. If we are trying to fill a pipe with a single TCP
connection (and, if the TCP connection is the sole user of the
link, filling the link is considered the canonical goal), then DB
should be the product of the bandwidth available to the con-
nection and the round-trip time.

An important point is that as the bandwidth goes up or
round-trip time increases, or both, this startup time can be
quite long. For instance, on a Gb/s GEO satellite link with a 0_5
second round-trip time, it takes 29 round-trip times or 14.5 sec-
onds to finish startup. If the link is otherwise idle, during that
period most of the link bandwidth will be unused (wasted).

Even worse is that, in many cases, the entire transfer will
complete before the slow start algorithm has finished. The
user will never experience the full link bandwidth. All the
transfer time will be spent in slow start. This problem is par-
ticularly severe for I-rI'rP (the World Wide Web protocol),
which is notorious for starting a new TCP connection for
every item on a page. 5 This poor protocol design is a (major)
reason Web performance on the Interact is perceived as poor.
the Web protocols never let TCP get up to fur speed.

Currently, the IETF is in the early stages of considering a
change to allow TCPs to transmit more than one segment (the
current proposal permits between two and four segments) at
the beginning of the initial slow start. If there is capacity in
the path, this change will reduce the slow start by up to three
round-trip times. This change mostly benefits shorter transfers
that never get out of slow start.

The second problem is interpreting loss as indicating con-
gestion. TCP has no easy way to distinguish losses due to
transmission errors from losses due to congestion, so it makes
the conservative assumption that all losses are due to conges-
tion. However, as was shown in an unpublished experiment at
MIT, given the loss of a TCP segment early in the slow start
process, TCP will then set its initial estimate of the available
bandwidth far too low. And sincethe probing algorithm
becomes linear rather than exponential after the initial esti-
mate is set, the time to get to full transmission rate can be
very long. On a gigabit GEO link, it could be several hours!

•t TCP acl_owledgmenta are cumulative, so oneacknowledgment can
aclmow_clge multilge segments. Sending one aclmowk,dS,mo_ for every
two segments reduces the returnpath bandwidth contained by the
ac.la_wledgrnents.

A problem now being ageviated by the HTTP 1.I specifu:ation [9].

AA



• Table 1. Summary of satellite and TCP interactions.

Conges_n Avoidance -- Throughout a TCP connection, TCP
runs a congestion avoidance algorithm which is .similar to the
slow start algorithm and was described in the same paper by
Jacobson [8]. Essentially, the sending TCP maintains a conges-
tion window, an estimate of the actual available bandwidth of the
path to the receiver. This estimate is set initially by the slow start
at the start of the connection. Then the estimate is varied up and
down during the life of the connection based on indications of
congestion (or the absence thereof). In general, congestion is
assumed to be indicated by loss of one or more data6ams.

The basic estimation algorithm is as follows. Every round
trip, the sending TCP increases its estimate of the available
bandwidth by one maximum-sized segment. Whenever the
sender either finds a segment was lost (conservatively assumed
to be due to congestion) or receives an indication from the
network (e.g., an ICMP Source Quench) that congestion
exists, the sender halves its estimate of the available band-
width. The sender then resumes the one segment per round-
trip probing algorithm. (In certain, extreme, loss situations,
the sender will do a slow start).

Like the slow start algorithm, the major issue with this
algorithm is that over high-delay-bandwidth links, a datagram
lost to transmission error will trigger a low estimate of the
available bandwidth, and the linear probing algorithm wiU
take a long time to recover.

Another issue is that the rate of improvement under con-
gestion avoidance is a function of the delay-bandwidth prod-
uct. Basically congestion avoidance aLlows a sender to increase
its window by one segment, for every round-trip time's worth
of data sent. In other words, congestion avoidance increases
the transmission rate by I/DB each round trip [10, 11].

Se/ec_o Acknawledgments -- Recently the Internet Engineer-
ing Task Force has approved an extension to TCP called
SElective Acknowledgments (SACKs) [12]. SACKs make it
possible for TCP to acknowledge data received out of order.
Previously TCP had only been able to acknowledge data
received in order.

SACKs have two major benefits. First, they improve the
efficiency of TCP retransmissions by reducing the retransmis-
sion period. Historically, TCP has used a retransmission algo-
rithm that emulates selective-repeat ARQ using the
information provided by in-order acknowledgments. This algo-
rithm works, but takes roughly one round-trip time per lost
segment to recover. SACK allows a TCP to retransmit multi-
ple missing segments in a round trip. Second, and more
importantly, work by Mathis and Mahdavi [12] has shown that
with SACKs a TCP can better evaluate the available path
bandwidth in a period of successive losses and avoid doing a
slow start.

Inter-Relatians _ It is important to keep in mind that all the
• various TCP mechanisms are interrelated, especially when

applied to problems of high performance. If the sequence
space and window size are not large enough, no improvement
to congestion windows will help, since TCP cannot go fast

enough anyway. Also, if the receiver chooses a small window
size, it takes precedence over the congestion window, and can
limit throughput.

More broadly, tinkering with TCP algorithms tends to show
odd interrelations. For instance, the individual TCP Vegas
performance improvements [13, 14] were shown to work only
when applied together applying only some of the changes
actually degraded performance. And there are also known
TCP syndromes where the congestion window gets misesti-
mated, causing the estimation algorithm to briefly thrash
before converging on a congestion window. (The best known
is a case where a router has too little buffer space, causing
bursts of datagrams to be lost even though there is link capac-
iv/to carry all the datagrams).

Satellites and TCP/IP Throughput

or the rest of this article we apply the general discussion of
the previous section to the specific problem of achieving

high throughput over satellite links. First, we point out the
need to implement the extensions to the TCP sequence space
and window size. Then we discuss the relationship between
slow start and performance over satellite links and some pos-
s_le solutions.

Currently satellites offer a range of channel bandwidths,
from the very small (a compressed phone circuit of a few kb/s)
to the very large (the Advanced Communications and
Telecommunications Satellite with 622-Mb/s circuits). They
also have a range of delays, from relatively smaU delays of low
earth orbit (LEO) satellites to the much larger delays of GEO
satellites. Our concern is making TCP/IP work well over those

ranges.

General Performance
Many of the problems described in the previous section on
TCP/IP performance were ones that became acute only over
high-delay-bandwidth paths. One of the first things to note is
that all but the slowest satellite links are, by definition, high-
delay-bandwidth paths, because the transmission delays to and
from the satellite from the Earth's surface are large.

Table 1 illustrates for a range of common bandwidths,
when the TCP enhancements of PAWS and large windows are

required to fully utilize the bandwidth on a LAN link with 5
ms one-way delay, a LEO link (100 ms one-way) and GEO
(250 ms one-way) link, for a range of link speeds. We also
indicate how long slow start takes to get to full link speed,
assuming 1 KB datagrams (a typical size) are transmitted and
how much data is transferred during the slow start phase.

The table highlights some key challenges for satellites (and
also for transcontinental terrestrial links, which have delays
similar to LEO satellite links). One simply cannot get a
TCP/IP implementation to perform well at higher speeds
unless it supports large windows, and at speeds past about 100
Mb/s, PAWS. Thus anyone who has not had their TCP/IP
software upgraded with PAWS and large windows will not be
able to achieve high performance over a satellite link.
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U TololeZ Approximate number of bits sent over GEO link dur-

ing congestion avoidance.

Slow Start Revisited

Another point of Table 1 is that the initial slow start period
can be quite long and involve large quantities of data. Particu-
larly striking is the column for 155 Mb/s transfers. Between 8
and 21 megabytes of data are sent over a satellite link during
slow start at 155 Mb/s. Even at 1.5 Mb/s a GEO link must
carry nearly 200 KB before slow start ends. Few data transfers
on the Internet are megabytes long. Many are a few kilobytes.
All of which says that satellite links will look slow and ineffi-
dent for the average data transmission. Interestingly enough,
long-distanceterrestriallinkswillalsolookslow.Theirdelays
arecomparabletothoseofLEO links.

Furthermore,observethatthetablehelpsexplainthevaria-
tioninreportedTCP goodput oversatellitelinks.Shortdata
transferswillnever achievefulllinkrate.In many cases,a
gigabytefiletransferor largerisprobablyrequiredtoensure

throughputfiguresarenot heavilyinfluencedby slowstart.
Obviouslysome sortofsolutiontoreduce theslow start

transientwould be desirable.But findinga solutionisn'teasy.
One obvious solution is to dispense with slow start and just

start sending as fast as one can until data is dropped, and then
slow down. This approach is known to be disasterous. Indeed,
slow start was invented in an environment in which TCP
implementationsbehaved thisway and were drivingtheInter-
net into congestion collapse. As one example of how this
scheme goes wrong, consider a Gb/s capable TCP launching
several 100s of megabits of data over a path that turns out to
have only 9.6 kb/s of bandwidth. There's a tremendous band-
width mismatch which will cause datagrams to be discarded or
suffer long queuing delays.

As this example illustrates, one of the important problems
is that a sending TCP has no idea, when it starts sending, how
much bandwidth a particular transmission path has. In the
absence of knowledge, a TCP should be conservative. And
slowstart is conservative m it starts by sendingjust one dam.
gram in the first round trip.

However, it is clear that somehow we need to be able to

give TCP more information about the path if we are to avoid
the peril of having TCP chronically spend its time in sl0w
start. One nice aspect of this problem is that it is not specific
to satellites. Terrestrial lines need a solution too, and thus if
we can find a general solution that works for both Satellites
and terrestrial lines, everyone will be happy to adopt it.

Improving Slow Start m If the TCP had more information
about the path, it could presumably skip at least some of
the slow start process possibly by starting the slow start at a
somewhat higher rate than one datagram. (The IETF initia-
tive to use a slightly larger beginning transmission size for
the initial slow start is a step in this direction). But actually
learning the properties of the path is hard. IP keeps no
path bandwidth information, so TCP cannot ask the net-
work about path properties. And while there are ways to
estimate path bandwidth dynamically, such as packet-pair
[12, 13], the estimates can easily be distorted in the pres-
ence of cross traffic.

TCP Spoofing -- Another idea for getting around slow start is
a practice known as "TCP spoofing," described in [14]. The
idea calls for a router near the satellite link to send back

acknowledgments for the TCP data to give the sender the illu-
sion of a short delay path. The router then suppresses acknowl-
edgments returning from the receiver, and takes respons_ility
for retransmitting any segments lost downstream of the router.

There are a number of problems with this scheme. First, the
router must do a considerable amount of work after it sends an

acknowledgment. It must buffer the data segment because the
original sender is now free to discard its copy (the segment has
been acknowledged) and so if the segment gets lost between
the router and the receiver, the router has to take full responsi-
bility for retransmitting it. One side effect of this behavior is
that if a queue builds up, it is likely to be a queue of TC'P seg-
ments that the router is holding for possible retransmission.
Unlike IP datagrams, this data cannot be deleted until the
router gets the relevant acknowledgments from the receiver.

Second, spoofing requires symmetric paths: the data and
acknowledgments must flow along the same path through the
router. However, in much of the Internet, asymmetric paths
are quite common [15].

Third, spoofing is vulnerable to unexpected failures. If a path
changes or the router crashes, data may be lost. Data may even
be lost after the sender has finished sending and, based on the
router'sacknowledgments, reporteddatasuccessfullytransferred.
Fourth,itdoesn'twork ifthedataintheIPdatagramisencrypt-

edbecausetherouterwillbeunabletoreadtheTCP header.

Cascading TCP -- Cascading TCP, also know as split TCP, is
a idea where a TCP connection is divided into multiple TCP
connections, with a special TCP connection running over the
satellite link. The thought behind this idea is that the TCP
running over the satellite link can be modified, with knowl-
edge of the satellite's properties, to run faster.

Because each TCP connection is terminated, cascading
TCP is not vulnerable to asymmetric paths. And in cases
where applications actively participate in TCP connection
management (such as Web caching) it works well. But other-
wise cascading TCP has the same problems as TCP spoofing.

Error Ratesfor Satellite Paths
Experience suggests that satellite paths have higher error
rates than terrestrial lines. In some cases, the error rates are
as high as I in 10"s.

Higher error rates matter for two reasons. F_-st, they cause
errors in datagrams, which will have to be retransmitted, Sec-
ond, as noted above, TCP typically interprets loss as a sign of
congestion and goes back into a modified version of slow
start. Clearly we need to either reduce the error rate to a level
acceptable to TCP or find a way to let TCP know that the
datagram loss is due to transmission errors, not congestion
(and thus TCP should not reduce its transmission rate).

Acceptable Error Rates -- What is an acceptable link error
rate in a TCP/IP environment? There is no hard and fast
answer to this problem. This section presents one way to think
about the problem for satellites: looking at TCP's natural fre-
quency of congestion avoidance starts, and seeking an error
rate that is substantially less than that frequency.

Suppose we consider the performance of a single estab-
lished TCP over an otherwise idle link. Once past the initial
slow start, the established TCP connection with data to send
will alternate between two modes:

• Performing congestion avoidance until a segment is
dropped, at which point the TCP falls back to half its win-
dow size and resumes congestion avoidance



• Occasionallyperforminga slow start when loss becomes severe.
During much of the congestion avoidance phase, the TCP

will typically be using the path at or near full capacity. Rough-
Iy speaking this phase lasts p round-trip times, where p is the
largest value such that the following inequality is true:

P

_i<b
./=l

Where b is the buffering in segments at the bottleneck in the
path. (Why this equation? In congestion avoidance the TCP is
sending an additional segment every round trip. Suppose we
start congestion avoidance at exactly the right window size,
namely the delay-bandwidth product. In the first round trip of
congestion avoidance the TCP will be sending one segment
more than the capacity of the path, so this segment will end
up sitting in a queue. In the second round trip, the TCP will
send two segments more than the capacity and these two seg-
ments will join the first one segment in the queue. And so
forth, until the queue is filled and a segment is dropped.)
Table 2 shows the number of bits sent during the congestion
avoidance phase for a range of GEO link speeds, buffer sizes
and values ofp.

Clearly we would like to avoid terminating the congestion
avoidance phase early, since it causes TCP to underestimate
the available bandwidth. Turning this point around, we can
say that a link should have an effective error rate sufficiently
low thatitisveryunl_elythatthecongestionavoidancephase

willbe prematurelyended by a transmissionerror.Table 2
suggeststhisrequirementmeans thatsatelliteerrorrateson

higher-speedlinksneed tobe on the orderofI in10xzorbet-
ter.That'sabouttheedge oftheprojecteden'orratesfornew
satellites.The ACTS satelliteroutinelysends10*3bitsofdata

withoutan error.ProposedKa band systemsareaimingforan
effective error rate of about 1 in 10 .2.

Teochin O TCP to Ignore Transmlssion Errors -- As an alterna-
tive to, or in conjunction with, reducing satellite error rates
we might wish to teach TCP to be more intelligent about han-
dling transmission errors. There are basically two approaches:
either TCP can explicitly be told that link errors are occurring
or TCP can infer that link errors are occurring.

NASA has funded some experiments with explicit error
notification as part of a broader study on very long space links
done at Mitre [16]. One general challenge in explidt notifica-
tion is that TCP and IP rarely know that transmission errors
have occurred because transmission layers discard the errored
datagrams without passing them to TCP and IP.

Having TCP infer which errors are due to transmission
errors rather than congestion also presents challenges. One
has to find a way for TCP to distinguish congestion fro m
transmission errors reliably, using only information provided
by TCP acknowledgments. And the algorithm better never
make a mistake, because a failure to respond to congestion
losscan exacerbatenetworkcongestion.So faraswe know, no

one has experimentedwithinferringtransmissionerrors.

Conclusions

,_tellite links are today's high-delay-bandwidth paths.
omorrow high-delay-bandwidth paths will be everywhere.

(Consider that some carriers are already installing terrestrial
OC-768 [40 Gb/s] network links.) So most of the problems
described in this article need to be solved not just for satel-
lites but for high-delay paths in general.

The fhst step to achieving high performance is making sure
the sending and receive TCP implementations contain all th6
modem features (large windows, PAWS, and SACK) and that

the TCP window spade is larger than the delay-bandwidth
product of the path. Any user worried about high perfor-
mance should take these steps now.

The next step is to find ways to further improve the perfor-
mance of TCP over long delay paths and in particular, reduce
the impact of slow start. Slow start provides an essential ser-
vice; the issue is whether there are ways to reduce its start up
time, especially when the connection first starts. Because long
delay satellite links are only an instance of the larger problem
of high-delay bandwidth paths, the authors are less interested
in point solutions that only address the performance problems
for satellites. We look with hope for solutions that benefit
both terrestrial and satellite links.
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